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LETTER TO THE EDITOR 

Asymptotic properties of spiral self-avoiding walks 

S Redner and L de Arcangelis 
Center for Polymer Studied and Department of Physics, Boston University, Boston, 
Massachusetts 02215, USA 

Received 27 October 1983 

Abstract. We consider the spiral self-avoiding walk model recently introduced by Privman. 
On the basis of an analogy with the partitioning of the integers, we argue that the number 
of N-step spiral walks should increase asymptotically as pJN with p a constant, leading 
to an essential singularity in the generating function. Enumeration data to 65 terms 
indicates, however, that c, apparently varies as pNn, with a -0.55. We also study the 
N-dependence of the mean-square end-to-end distance, (It:), and of the mean rotation 
angle, (ON), for N-step walks. From series extrapolations, we estimate that ( R L ) - N '  *, 
and (e,) - 

Very recently, Privman (1983) introduced for the square lattice a 'spiral' self-avoiding 
walk (SAW) model, defined to be a SAW with the additional constraint that a 90" 
left-hand turn is not allowed. Accordingly, a walk will tend to spiral around the origin 
in the clockwise sense (figure 1) .  On the basis of exact enumeration data to order 40, 
Privman argued that the spiral SAW model is in a different universality class than the 
isotropic SAW problem. This result was interpreted as arising from the fact that the 
spiral restriction is effectively global in nature when it augments the self-avoiding 
constraint. 

Well known examples of a global constraint modifying the universality class occur 
in 'directed' problems (see e.g. Kinzel 1983). The directionality constraint can be 
thought of as analogous to a uniform drift superimposed on a transport problem. This 

"3 :Inb 
"i 

F p r e 1 .  Schematic picture of a spiral SAW on the square lattice. The lengths of the 
vertical segments are denoted by n, ,  n2,,. . . ,and the horizontal segments by n;, n;, . . . . 
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drift may be accounted for by a term of the form udrift k in a mean-field propagator, 
where k is the wave vector (see e.g., Redner 1982). The presence of this term is 
sufficient to understand the essential anisotropic nature of directed problems. Similarly, 
one may regard the spiral problem as a critical phonomenon taking place in a rotational 
flow field. Such an effect might be accounted for at the mean-field level by including 
a term of the form w X k in the propagator, where w is a rotational velocity. Such a 
term, linear in k, should also modify the large-distance behaviour of the model. These 
observations also suggest that the average rotation angle of spiral walks will possess 
an interesting asymptotic behaviour. 

In this letter, we present evidence which indicates that spiral self-avoiding walks 
exhibit a novel critical behaviour. By making an analogy with the problem of the 
'partitioning' of integers, we argue that the number of N-step walks, cN, should grow 
as pJN,  with p a constant, leading to an essential singularity in the associated generating 
function G(x)  = &., cNxN. This is in sharp contrast to the usual SAW model where 
C, - p N N Y - '  , so that G(x)  possesses the power law singularity (x -  x,)-~. To test this 
possibility, we extend the series data of Privman to order 65. Extrapolation of the 

(Y = 0.55. We also examine the N-dependence of the mean-square end to end distance, 
(I?;), and the mean rotation angle with respect to the starting direction, ( O N ) .  On 
the basis of extrapolating 65 and 60 term series respectively, it appears that these two 
quantities exhibit the following power-law dependences: ( R k )  - N2" with v = 0.60, 
and (0 , )  - N"e with vo = 0.55. 

In table 1,  we present the enumeration data of spiral walks with the starting direction 
fixed. The enumeration for cN and ( R ; )  to order 65 and for ( O N )  to order 60 require 
approximately 5.5 h and 6.1 h of CPU time respectively on an IBM 3081-D machine. 
The series were obtained by a direct enumeration of all walks, and relatively lengthy 
series were obtainable due to the slow growth rate of the C, on N For the purposes 
of extrapolation, the ratio method appears to be the simplest and best-suited to detect 
the asymptotic behaviour. Figure 2 shows the results of extrapolations for the critical 
point based on fitting cN to pNNy-'. One observes that the sequence of critical point 
extrapolants based on even series terms and the one based on the odd terms show 
contradictory trends. A rough visual extrapolation suggests p = 1.04, although it seems 
possible that the value p = 1 might result if there were considerably more terms 

series indicates, however, that the growth law for the cN is c N - p  N" , with 

I I I 1 1 I I ' I " ' I  

Figure2. Ratio extrapolants for the critical point plotted against 1/N: even terms (+), 
and odd terms (0). 
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Table 1. Enumeration data for spiral SAWS; the last digit after the decimal may be rounded 
Off. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

1 
2 
4 
7 

13 
21 
37 
57 
95 

143 
227 
335 
513 
744 

1106 
1580 
2 294 
3 232 
4 600 
6 402 
8 962 

12 329 
17 019 
23 169 
31 589 
42 599 
57 453 
76 796 

102 588 
136 019 
180 131 
237 061 
311 489 
407 097 
531 113 

1 .oooo 
3.0000 
5.0000 
7.4286 
9.0000 

11.4286 
12.4595 
14.8070 
15.6526 
17.8182 
18.7269 
20.7761 
21.803 1 
23.7930 
24.9783 
26.9519 
28.2816 
30.2661 
31.7461 
33.7470 
35.3584 
37.3959 
39.1212 
41.1990 
43.0293 
45.1472 
47.0724 
49.2329 
5 1.24 10 
53.4446 
55.5269 
57.7712 
59.9202 
62.2032 
64.4 108 

0.0000 36 
0.3927 37 
0.7854 38 
1.0098 39 
1.3291 40 
1.4960 41 
1.7831 42 
1.9290 43 
2.1660 44 
2.3177 45 
2.5119 46 
2.6633 47 
2.8323 48 
2.9801 49 
3.1317 50 
3.2728 51 
3.4141 52 
3.5489 53 
3.6804 54 
3.8102 5 5  
3.9351 56 
4.0586 57 
4.1785 58 
4.2969 59 
4.4118 60 
4.5260 61 
4.6367 62 
4.7468 63 
4.8540 64 
4.9604 65 
5.0642 
5.1673 
5.2681 
5.3683 
5.4664 

689 678 
893 884 

1 153 837 
1 486 445 
1 908 002 
2 444 270 
3 121 064 
3 977 420 
5 053 839 
6409 117 
8 106019 

10 232 851 
12 885 792 
16 196 772 
20 312 050 
25 427 666 
31 764 104 
39 61 1 552 
49 299 720 
61 256 038 
75 970 439 
94 069 393 

116276080 
143 504 932 
176816714 
2 17 540 090 
267 222 691 
327 786 359 
401 476 801 
491 062 665 

66.7302 
68.9894 
71.3421 
73.6470 
76.0297 
78.3747 
80.7849 
83.1648 
85.5996 
88.0105 
90.4675 
92.9058 
95.3831 
97.8457 

100.341 8 
102.8265 
105.3400 
107.8451 
110.3751 
112.8992 
115.4453 
117.9875 
120.5492 
123.1090 
125.6863 
128.2633 
130.8562 
133.4502 
136.0590 
138.6701 

5.5637 
5.6593 
5.7541 
5.8474 
5.9399 
6.0309 
6.1213 
6.2103 
6.2986 
6.3858 
6.4722 
6.5576 
6.6422 
6.7259 
6.8089 
6.8911 
6.9725 
7.0531 
7.1331 
7.2123 
7.2909 
7.3688 
7.4460 
7.5226 
7.5986 

available for analysis. Moreover, the estimate for y is approximately 7 by order 65, 
and it is still increasing steadily with N, suggesting that the extrapolated value may be 
infinite. 

These observations suggest that the assumption cN - p N N y - ’  is not valid for spiral 
self-avoiding walks, and that one should seek an alternative law for the cN. Our 
approach for finding the N-dependence of cN, is based on examining figure 1. We 
denote the number of bonds in the successive vertical segments by n,, n 2 , .  . . , and the 
number in the horizontal segments by n ; ,  n;, . . . . As long as n1 < n 2 < .  . . and 
ni < n; < . . . the walk can continue to grow. If, however, one of the inequalities is 
not satisfied for some nk, then the walk must eventually ‘die’ in a finite vortex. Thus 
one might expect that the asymptotic behaviour of the cN to be dominated by only 
those walks which satisfy the above inequalities. 

These inequalities define a partitioning problem where the total number of vertical 
steps in the walk, NVert, may be divided into k separate segments of unequal and 
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increasing size (except that the last segment may have arbitrary length). A similar 
situation occurs for the horizontal bonds, so that cN is essentially given by the total 
number of these partitionings for all possible values of N,,,,, and Nhorlz subject to 
N,,,, + Nhorlz = N. The partitioning of the integers is a classical problem, and the results 
relevant to the spiral SAW model are well known (see e.g., Abramowitz and Stegun 
1964, Percus 1971). For completeness, however, we outline a very simple, although 
quite crude estimate for caw which is in remarkably good agreement with the asymptotic 
behaviour of the number of partitions of N for N +  CO (Abramowitz and Stegun 1964). 

Consider only the vertical segments of the walk, and write N for N,,,, in what 
follows. We must have 

n 1 < n 2 <  . . .  < n k  (1) 
k with n, = N  and 1 S k s k,,,, with k,,,, the maximum number of segments in 

an N-step spiral, determined by the condition Er:? i = N. The latter constraint, 
corresponding to the ‘tightest’ possible spiralin which the length of each successive 
segment increases by 1, leads to km,,-J2N. (We ignore the fact that the length 
of the last segment, nk, may be arbitrary.) This gives 

cN = number of unequal partitionings of N 
kmax 

= 1 number of partitions of N into n ,  < n2 < . . . < nk 
k = l  

(2) 
1 

= c - number of partitions of N into k unequal groups. 
k k! 

We now relax the constraint n1 < n2 < . . . to nl S n 2 S  . . . . This corresponds to a 
spiral which has the possibility of occasionally tracing over its path as it expands. Thus 
our estimate for cN will be an upper bound. We have 

1 7 number of partitions of N into k groups of arbitrary sizes 
k k  

cN = 

1 N-1 =?z( k-1) ’  (3) 

At this stage, we write the sum as an integral and use Stirling’s approximation to write 
the integrand in the form exp[ f (k)]. This gives 

cN -@!f exp[ f (  k)] dk  27r (4) 

with f ( k ) =  k - ( N - k + $ )  ln (N-k) - (2k+ l )  In k. We then perform this integral by 
writing f (  k) -- f (  k,) + $( k, - k)’f”( k,), where ko is the value of k which maximises 
f (  k),  and then evaluating the Gaussian integral. By setting f‘( k,) = 0, we find ko - f i , 
and by examining f ” ( k , ) ,  we find that the width of the peak of the distribution grows 
as N1l4. Hence the customary next step of extending the upper limit of the resulting 
Gaussian integral to infinity is not entirely justified. Proceeding nevertheless, one 
obtains after performing a simple integral, 

CN -e2fi/(2~1’2N1/4).  (5a )  
With this asymptotic form, one may easily derive that the generating function displays 
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the following essential singularity near the critical point 

G(x = 1 - E )  = ( 5  b) 

Our result in equation (5a) is of the same general form as the following asymptotic 
expression for the number of unequal partitions of the integer N quoted in Abramowitz 
and Stegun (1964) 

cN 2 e ' m / ( 4 .  3'/4N3/4). ( 6 ~ )  

In addition, the exact generating function for the partitioning problem is 

G ( x ) =  ( l + x N )  
N = l  

which can be readily shown to have an essential singularity as x + 1- by taking the 
logarithm, expanding the multiple factors for x small, and then re-exponentiating the 
resulting expression. 

To investigate the N-dependence of the exact cN, we performed the following 
simple analysis. If cN grows as p N " ,  then in terms of the successive ratios rN = C ~ / C ~ - ~ ,  

the quantity sN = log r N  should approach the constant a log p. A plot of SN 

against 1/N for 3 values of a are shown in figure 3. Evidently, for the choice a = 0.55, 
the sN do approach a constant which is approximately equal to 1.318, yielding the 
estimate p =  10.98. This indicates that finite walks which are trapped in vortices 
represent a substantial contribution to the total number of walks, and this feature 
aP2:ently shifts the growth law of the cN from p f i ,  predicted in equation ( 5 4 ,  to 
p . It should be noted from figure 1,  however, that a terminating walk can be 
decomposed into two counter-rotating spirals. For each spiral, we expect the growth 
law of pfi  should hold, so that the number of all walks should also grow at this rate. 
This last statement would be valid if the dominant contribution to all walks came from 
superposing two counter-rotating spirals with approximately equal number of steps. 
Thus our conclusion that cN does grow more rapidly than p f i  may be due to the 
extremely slow convergence of the series. 

While cN has a novel N-dependence, ( R g )  and (0,) do appear to diverge as simple 
power laws in N. Defining exponents by (I?%> - N2" and (0,) - N"e, we find that the 

t I I I I 1 I I I I I I I  1 
1/16 1/20 1/24 1/28 1/36 1/46 1/64 

1 / N  

Figure 3. A plot of sN = N I - -  l o g ( c N / c N - , )  against 1/N for three choices of a: a =0.50 
(01, a =0.55 ( + I ,  and a =0.60 ( x) .  
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ratio extrapolants for v are strongly N-dependent. However, by order 65 a clear 
trend is reached which suggests that v=0.60. Ratio extrapolants for vg are much 
better behaved than those for v, and we estimate v,=O.55. This exponent value 
explains why the cN apparently vary as P ~ " ' ~ ,  rather than as pJN. The mean rotation 
angle should be approximately equal to one-fourth the total number of segments in 
the spiral. From our analysis leading to equation ( 5 ) ,  we saw that the typical number 
of segments in the spiral, ko,  (as well a s the  expected length of the longest segment 
in the spiral) should both increase as JN. This J N  behaviour immediately gives a 
pq5 dependence of the cN. If, however, the typical number of segments increases as 

, then cN should vary as p N o  5 5 .  The former alternative is suggested by the analytical 
approach, while the latter is suggested by our series data. 
NO 5 5  
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